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1. Introduction
1.1. Background

In the practical design and analysis of engineering structures, it
becomes very important to predict the deflections, strains and
stresses to prevent a catastrophic failure. If these are made of vis-
coelastic materials, then it becomes critical to evaluate the re-
sponse of the structure over a long period. Experimental methods
to measure these are often costly, time consuming and sometimes
not possible. The theoretical and mathematical background of vis-
coelasticity has long been established [1-7]. Most of the analytical
methods use the correspondence principle [8], to analyze visco-
elastic problems. However, this method is restricted to very limited
problems with simple geometry and loadings for which explicit
solutions are available.

Hence, for practical design of viscoelastic structures there is a
need for numerical methods like the finite element method [9],
or the boundary element method [10]. The finite element method
is a proven technique and has been applied to static and dynamic
problems in structural mechanics. Most of the finite element ap-
proaches are based on integral transform methods [11], or super
position methods [12]. However, as noted by Chen and Lin [13],
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these methods based on integral transforms, introduce errors into
the numerical scheme, due to the approximate nature of the inver-
sion techniques. They presented an incremental based finite ele-
ment technique for the dynamic response of viscoelastic beams.
It avoids the integral transformation, and thus the errors, by
replacing the creep strain increments by fictitious body forces.

The early viscoelastic finite element codes are based on history
integral forms, as in Ref. [14,15]. Finite element techniques based
on these methods requires the storage of solution vector for the en-
tire deformation history, which becomes a bottle neck when the
computational memory is scarce. Johnson et al. [16] developed a
technique based on differential constitutive law; Payette and Red-
dy [17] and Vallala et al. [18] developed a similar technique based
on a two-point recurrence scheme. In the finite element formula-
tions based on these, the data storage can be limited to the last
few desired history steps. These formulations make use of mechan-
ical analogues like spring and dashpots for the mathematical mod-
el, to predict the response of the viscoelastic structures. The
classical generalized models of Maxwell solids, Maxwell-Voigt sol-
ids and n-parameter Kelvin-Voigt solids are used the most.

In this paper, a differential constitutive law is derived based on
an assumed kinematic field (presented in the next section) that
necessitates the use of 2D plane-stress constitutive model. The
constitutive relations for linear anisotropic viscoelastic materials
are given in Ref. [19,20]. We make use of fact that relaxation mod-
uli for a linear orthotropic material is symmetric as verified exper-
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imentally by Halpin and Pagano [20]. The time dependent relaxa-
tion moduli in the viscoelastic constitutive equation is expanded
in a Prony series for the mechanical analogue models used. For
more on the constitutive equations and the number of independent
constants in compliance/relaxation tensor see Ref. [21].

1.2. Higher-order beam theories

Beams are structural elements whose length is large compared
to their cross-sectional dimensions. They are supported at few
points along the length, and subjected to forces that make the
structure to stretch and bend. Theories that are used to study the
response of beams under external loads are obtained by reducing
the general three-dimensional elasticity problem through a series
assumptions concerning the kinematics of deformation and consti-
tutive behavior. The kinematic assumptions exploit the fact that
such structures do not experience significant strains or stresses
associated with the thickness direction. Thus, the solution of the
three-dimensional elasticity problem associated with a beam
structure is reformulated in terms of displacements or stresses,
whose form is presumed on the basis of an educated guess con-
cerning the nature of the deformation.

Beam theories based on the assumed form of the displacement
field are most popular. In these theories, the displacements are ex-
panded in increasing powers of the thickness (or height) coordi-
nate. The word “order” refers to the power of the thickness
coordinate in the power series expansion of the displacement field.
The cubic expansion of the displacement field is optimal because it
gives quadratic variation of transverse shear strain and stress, and
require no “shear correction factors” compared to the lower-order
Timoshenko beam theory, where the transverse shear strain and
stress are constant through the beam thickness.

In the context of higher-order theories, there is no beam theory
that accounts for shear deformation while not requiring shear cor-
rection factors, material variation through the beam thickness, and
geometric nonlinearity. This very fact motivated the present study.
The objective of the current paper is to develop a general third-or-
der beam theory that accounts for two-constituent material prop-
erties with von Karman nonlinear strains to capture the bending-
extensional coupling. Hence we consider displacement field of
the form
Ui (X,2,t) = U, t) + 205 (X, 1) + Z2 Py (X, t) + 22, (X, 1)
uy(x,z,t) =0
Us(X,2,t) = Wo(X, t) +20,(X, t) + 2%, (X, t) (1.1

Then the nonzero von Karman nonlinear strains are

ou 1 /ow\*| 00, ,0h, 50U,
a*z(a) TP T T

e 0t 2200+ ) (30,28

&7 =0,+22¢, (1.2)

The strain field can be expressed as

Exx =

e = &9 +zell) + 226D 4+ 26l
Ve = yxz + Zyxz + ZZVXZ
& = &) + 26 (1.3)
where
ou, 1 a0 9 Y

©o_du_ 1 M) % o2) _ 9P o3 _ IV

b =ox 2 ( ) o =g B Ty B 3x (14)
ow 6¢z

60 =0:, o =24, 90 =0+ W =264+ 5% a0 T2 =3t (15)

It must be noted that the assumed form of displacement field
gives rise to nonzero strain on the top and bottom surfaces of
the beam. Also, it can be shown that all other third-order and
lower-order theories can be derived from this; hence, we call it a
general third-order beam theory. More details on higher-order shear
deformable theories can be found in noted works by Reddy [22-
24].

2. Constitutive model

As shown above, the assumed displacement field makes the
strain &,, to be nonzero, which necessitates us to consider a 2D
plane-stress constitutive model. For a linear orthotropic material
the relation between second Piola-Kirchhoff stress tensor, denoted
by & and reduced strain tensor E ~ ¢ is given by

Oxx Qll(o) Q13(0) 0 Sxx(x’t)
0z p=|Q43(0) Q3(0) O &22(X,1)
Ox 0 0 Qss5(0)] | 7 (x:1)
JQu(t-s) Qis(t-s) 0 £x(X,5)
[ |@st-9 Quie-s) 0 [{ e pds 1)
' 0 0 Qss(t—s)] W79

where Q; are the time independent, plane-stress reduced, elastic
coefficients and Q,, are the monotonically decreasing functions of
time that constitute the plane-stress reduced viscous coefficients.
The elastic plane-stress coefficients are related to engineering
material constants as

E(0) VB (0)  vuE(0)
WO=7= 0 GO =T .
E, (0
Q25(0) = 20 Q55(0) = Ge(0) 22)
XzZVzx
the time dependent viscous stiffness values are
Ef(t—s) . VB (t—5)  vaEi(t—5)
Qult-9 =775 Qslt-9=97 L =1
- E(t—s - -
Qs3(t—5) :12(—), Qss5(t —S) = Gy (t —9) (2.3)
- VXZVZX

where E,(t) and E,(t) are the extensional relaxation moduli and
Gyx(t) is the shear relaxation moduli. Where as v,, and v,, are the
major and minor Poisson’s ratios of the beam. The specific forms
of E\(t), EAt) and G,,(t) will depend on the material model em-
ployed. In this study, we express each one of them using a Prony
series of order n as

=Ey + ZEIE ?

The time derivative of the relaxation moduli can be expressed
as

E(t):—ZE‘ Vrf, C(t):—z G, (2.5)

¥ ¢

=Go+> Ge T (2.4)

It is important to note that in the integral constitutive equations
given by Eq. (2.1) we assume that a discontinuity exists in the re-
sponse only at t = 0. This Prony series representation of the visco-
elastic relaxation moduli is critical in developing the recurrence
scheme and to implement efficient temporal numerical integration
algorithms of the viscoelastic constitutive equations.

3. Weak form and semi-discrete element model
3.1. Galerkin weak form

To derive equations of motion we use the Hamilton’s principle
(see Ref. [23]) in the undeformed configuration
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/r2[51<—(5U+5V)] dt=0 (3.1)

where 6K is the virtual kinetic energy, 6U is the virtual strain energy,
and 6V is the virtual work done by external forces. Evaluating each
of these terms and performing the necessary integration-by-parts
with respect to x and t, we obtain the following weak forms of
the governing equations over a typical finite element Q€ = (x4, xp):

X
0= / <m0u¢>u+m10 U+ My ySU+ M3 u+ MO 00U 5u>dx7[M§2>6u] ’

XX 0 Xa
(3.2)
) OW dow 0) oW
0= / (mowéw+m]025w+m2¢zow+Mxx P M W—Fﬁw)d
Xp
- [Mxx 0Wow+M<° 5w}
ox M
(3.3)
* . ' . (1)000x ©
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JXq
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(3.4)
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(338)

where (5u, 6w, 80y, 5y , 6, 80, 5¢,) are the respective virtual varia-
tions that can be viewed as the test functions, and m; are the mass
inertias defined by

(Mo, My, My, M3, My, Ms, M| = /p[l,z,zz,z3,z4725,zs}dA (3.9)
JA
The various internal stress resultants are defined as

(3.10)

2z

MQ'X),M(”,M?;] - / Oy, Ozz, Oxo]Z dA
A
The terms F, and F, due to the external loads are given as

Fy = f0

Here f,,f, denote the distributed axial load and transverse load
about the y axis respectively. The variational problem for the gen-
eral third-order beam can be stated as: find (u,w, 0x, ox, Wx, 0,,6;) €
HY(Q) x H(Q) x H(Q) x H' x (2) HY(Q) x H' (Q) x H(Q) for all
(81, 6W, 60y, dbx, Wrx, 00,,0¢,) € H'(Q) x H' (Q) x HY(Q) x H! x

oL _ . oL .
Fzzfz("):>fx“>=/0 Zf dA, f;’>=/0 fdA (3.11)

(Q)H'(Q) x H'(Q) x H'(Q) such that the equations Egs. (3.2)-
(3.8) hold true, where H™(Q) is the Sobolev space of order m and
Q= [Xayxb]-

3.2. Semi-discrete finite element model

Since the assumed kinematic displacement requires only the
continuity of the primary variables across the element boundaries
and not its derivatives, i.e., C°-continuous, we use the following
equal-order interpolation functions for all variables

(%, £), WX, 1), 0x(X, £), §x (X, ), Y (X, £), 02(%, £), (X, 1)]

[UJ sWi(8), O (£), by (1), Wi (1), O34 (E), b (O)];(X) (3.12)

“MS

where ; are the one-dimensional nodal spectral interpolation
functions. The nodal expansion in the interval Q, =[-1,+1] for a
typical finite element is defined as

(E-D(E+ L)
)P+ DL(E)(E =)

where L, = PY° are the Legendre polynomials of order p, and ¢; de-
notes the location of the roots of (¢ — 1)(& + 1)L, (&) = 0 in the inter-
val [-1,+1]. These set of points {&}} U "* are commonly referred to
as Gauss-Lobatto-Legendre (GLL) pomts. Other nodal bases like
Chebyshev second-kind can also be used. The location of nodes in
a typical master element coincides with the roots of Legendre poly-
nomial hence the basis is called “spectral” [25]. In spectral basis the
nodes are not equally spaced within the canonical interval [-1,+1].
At high polynomial orders (five and above) the equi-spaced interpo-
lation functions exhibit spurious oscillations at the ends of the
interval, this is called Runge effect. This impacts the accuracy and
reliability of finite element formulation. The spectral nodal basis
does not suffer from this and also the Kronecker delta property,
i.e., Yj (&)= d; is not compromised.

In Fig. 1a we can see Runge oscillations for equally spaced La-
grange basis near the ends of the interval and in Fig. 1b the cardi-
nality condition of Kronecker delta is obvious. In generating the
above plot and in our code an analytically less complex and com-
putationally more stable form of Eq. (3.13) is used to generate
the nodal basis. The equation is shown below

Wj(f) =

(3.13)

(D)
i=1 &-4) (3.14)
j#i

¥i(&) =

Multi-dimensional spectral interpolation functions can be ob-
tained from the tensor product of the above one-dimensional
equation [9,26]. Substituting Eq. (3.12) into the weak forms in
Egs. (3.2)-(3.8), yields the semi-discrete finite element model of
the beam element. The quasi-static finite element equations can
be expressed as (and are given explicitly in Appendix A)

t~
I(A+/ KA(s) ds=F (3.15)
0

4. Fully discretized finite element equations
4.1. Time discretization using recurrence formulation

In order to derive fully discretized finite element equations,
we start with the partitioning of the time interval [0, T]cC R
(region of interest) into set of N non-overlapping subintervals
such that
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Lagrange Interpolation Functions

Fig. 1. Graphs of (a) equi-spaced and (b) spectral lagrange interpolation functions for polynomial order of p = 11.

0. M= [t ) (4.1)
k=1

The final solution is obtained by repeatedly solving an initial va-
lue problem within each subregion [ty, ti+1], with the known values
of solution at t = t; as initial conditions. From Eq. (3.15) it is clear
that the semi-discrete finite element equations have contributions
from elastic and viscous parts of the constitutive relations. The
elastic part is simple and straight forward, however, the contribu-
tion from viscous part is in the form of convolution integrals, hence
the full discretization of these is not a trivial task. In order to solve
the problem in each subinterval, we can approximate these convo-
lution integrals using two-point (trapezoidal rule) or three-point
(Simpson’s rule) formulas. But a direct temporal integration from
here, results in a computationally unattractive solution procedure
which requires the storage of the entire deformation history. It be-
comes a bottle neck for storing these when the computational
memory is scarce. Also, when the total number of time steps N is
large, much of the computational time expended to get the solu-
tion at a subinterval, goes into the evaluation of the convolution
integrals.

To circumvent these issues, we develop a recurrence scheme for
two-point (trapezoidal rule) formula that can be used to approxi-
mate the convolution integrals with in each subinterval. The
two-point recurrence scheme requires the storage of the general-
ized displacements and a set of internal variables evaluated at
the Gauss points, from the previous time step only. A similar
three-point Simpson’s scheme, which requires the storage from
last two time steps, is used in Ref. [27]. Using these ideas, the con-
volution integral appearing in Eq. (3.15) can be expressed as

/ " Ra(s) ds = § / “URAGs) ds (4.2)
0 k=1 'tk

In order to develop the recurrence formulation the following
multiplicative decomposition of the relaxation moduli [28], is used.
These equations hold true as the relaxation moduli can be ex-
pressed in terms of Prony series within each subinterval.

n
E(tier —s) = e M/TE(t —s)
=1

n
Gltia —5) =y e/ TGi(ty — ) (43)
=1

where Aty = ty+1 — tr. Using the above, Eq. (4.2) can be expressed in
index notion at an arbitrary time step t = t; as

_ n_NGP

Xi(ts) = ZI: /tw KijAi(s) ds =" "o Xi"(ts) (4.4)
k=1 7t

=1 m=1

where Einstein’s summation convention on repeated indices is im-
plied. As noted previously, Gauss quadrature is employed in evalu-
ation of EU, resulting in the summation over m (where NGP is the
number of Gauss points). The quantity X" assumes the following
possible forms for extensional and shear moduli

,Ats—l At E 7A[s—1

— prn _ E

Xmt)=e T XM(t, q) - Slr;(e zfim(tS1)+f,-"'(ts)> (4.5)
1

AL

- ol Aty G [ =t n
Xi"(ts) =€ T X"(ts1) - ]’<€ CfM (o) +f; (fs)> (4.6)

2 1

Note to get the above expressions, we replaced convolution
integrals with in each subinterval with a two-point trapezoidal
rule. Also, the specific forms of «,, and f(t;) depend on compo-
nents of I~<,-j. In Eq. (4.4), even though there are (s — 1) time steps
of k to get to time t = t5, the above equations just need the values
of solution {A(t;)} and internal variables X!™(t; ;) from k = t; and
k=t;_;. There is no need to store these values for all the (s — 1)
time steps. Thus the above equations represent recurrence formu-
las in terms of the internal variables X! (t;) with X!™(t; = 0) = 0.
Using Egs. (4.5), (4.6) results in the following quasi-static fully-dis-
cretized equations for generalized displacements at the current
time step (the components are presented in Appendix B)

KI{A(t:)} = {F}, - {Q}, (4.7)

5. Numerical examples

In this paper, we make use of higher-order spectral interpola-
tion functions without resorting to any selective or reduced inte-
gration techniques. The nonlinear finite element equations are
linearized using Newton-Raphson’s procedure (see Appendix B)
and the equations are solved using an iterative scheme. Since a
nonlinear beam becomes stiff with load, the total load is divided
into smaller load steps, with the solution of each step being used
for the next. For all the problems we use five load steps with a
maximum of 10 nonlinear iterations at each step. All problems in
this study converged within five iterations for a tolerance of
&=10"5. The computational domain is reduced by taking advan-
tage of the symmetry of the beam about x = L/2. The boundary con-
ditions considered in the analysis are.

(1) Hinged at both ends:

w(0) =0, u(L/2)=0, 0«(L/2)=0, ¢x(L/2)
=0, yy(L/2)=0 (5.1)
(2) Pinned at both ends:
u(0)=0, w(0)=0, u(l/2)=0, 0k(L/2)
=0, ¢(L/2)=0, yy(L/2)=0 (5:2)
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Table 1

Viscoelastic moduli.
Eo 205.7818 Ksi
E, 43.1773 Ksi % 9.1955 x 107 's
E, 9.2291 Ksi ] 9.8120 x 10°s
E; 22.9546 Ksi r§ 9.5268 x 10' s
E4 26.2647 Ksi ‘ci 9.4318 x 10%s
Es 34.6298 Ksi ‘L'E 9.2066 x 10%s
Es 40.3221 Ksi ‘Cg 8.9974 x 10%s
E; 47.5275 Ksi 1:;7 8.6852 x 10° s
Eg 46.8108 Ksi ‘Cg 8.5142 x 105 s
Eqy 58.6945 Ksi 'cg 7.7396 x 107 s

T ]
=~ (T T T 7711 =
= F 3 ]
— 6F M 3
o F 3
= F ]
£°F E
g el L
[a)] F oA A 1
3E @) 3) E
2k 3
s () ]
1[ =
. g ;
0’1 v b b b b b
0 300 600 900 1200 1500 1800
Time ¢, [s]

Fig. 2. Quasi-static maximum vertical deflection wy,,,, of viscoelastic beam under
uniform distributed load q.

Table 2

Quasi-static finite element results for the maximum deflection w,. of a viscoelastic
beam under uniform distributed load g with three different sets of boundary
conditions.

Time, t Fliigge At=0.1 At=05 At=1.0 At=2.0
0 7.2980 7.2995 7.2995 7.2995 7.2995
200 8.5429 8.5457 8.5648 8.6237 8.8512
400 8.6827 8.6856 8.7052 8.7661 9.0014
600 8.7680 8.7710 8.7910 8.8531 9.0931
800 8.8364 8.8394 8.8597 8.9228 9.1666
1000 8.8945 8.8976 8.9182 8.9820 9.2291
1200 8.9448 8.9478 8.9687 9.0333 9.2832
1400 8.9886 8.9917 9.0127 9.0780 9.3304
1600 9.0271 9.0302 9.0514 9.1172 9.3719
1800 9.0612 9.0644 9.0857 9.1520 9.4086
(3) Clamped at both ends:
u(0)=0, w(0)=0, 0(0)=0, ¢,(0)=0, ¥,(0)=0

u(l/2) =0, 6,(L/2) =0, ¢,(L/2) =0, y,(L/2)=0

(53)

5.1. Quasi-static analysis of thin beams

In the first example, we compare the results for a thin isotropic
beam (L/h > 20) in x and z directions with the results presented in
Ref. [18], for a n-parameter Kelvin-Voigt solid. The viscoelastic
material model is based on the experimental findings of Lai and

0.08

— — — — Elastic

r —— Viscoelastic

0.06

o
o
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o
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0 [m]

Deflection w,
S
o
]

-0.04

-0.06

-0.08 T ! T T
0 0.25 0.5 0.75 1

Time ¢, [s]

Fig. 3. Quasi-static maximum vertical deflection wy,q, of hinged-hinged beam
under harmonic time-dependent transverse loading q(t).

Bakker [29], for a glassy amorphous polymer material known as
PMMA. The Prony series parameters for the viscoelastic relaxation
modulus given in Table 1 were calculated by Payette and Reddy
[17], from the published compliance parameters in Ref. [29].
Although the finite element formulation places no restriction on
the relationship between E(t) and G(t), for the present analysis
we adopt the approach taken by Chen [30], and assume that the
shear and relaxation moduli are related as G(t)=E(t)/2(1+ V),
where v is Poisson’s ratio of the material, which is assumed to be
time-independent and equal to v=0.4 [31].

A viscoelastic beam of uniform cross section 1 x 1in., and
length L = 100 in., with material properties given in Table 1 is used
for the analysis. At t = 0 the beam is subjected to a time invariant
uniform vertical distributed load g =0.25 lb¢/in. A constant time
step At=1.0s is employed with a total simulation time of
1800 s. Graphical results are presented in Fig. 2 for a beam discret-
ized with two finite elements with 5th order spectral interpolation
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Fig. 4. Quasi-static maximum vertical deflection w4, of hinged-hinged elastic and
viscoelastic beams under time-dependent transverse loading q(t).
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Fig. 5. Quasi-static maximum vertical deflection wy,q, of hinged-hinged beam
under heaviside time-dependent transverse loading q(t).

functions. As expected, the deflection steadily increases, and then
approaches a zero slope of equilibrium or a long-time constant va-
lue. This behavior is called creep under constant load. Also at t = 0,
the results coincide with the instantaneous elastic solution, where
Young’s modulus is given as E = 535.4Ksi.

For the hinged-hinged beam configuration, the vertical deflec-
tion is compared with the following exact solution by Fliigge [8],
for a geometrically linear viscoelastic beam based on the Timo-
shenko beam theory

4 h 2
wo(L/2,t) = ;’gzgz [l +8(1512 ") <Z> }D(t) (5.4)

where D(t) is the creep compliance and K is the shear correction
factor. The results are given in Table 2 with different values of time
steps At.

In the second example, we study the cyclic creep response of a
thin orthotropic beam modeled as a Maxwell Solid. The values of
elastic moduli taken from Johnson et al. [16], are E,=38.6 GPa,
E,=8.27 GPa, Gy, = 4.14 GPa, vy, = 0.26, v, = Vy.E,[Ex and the Prony
series is taken as

P(t) = 1.0 + 0.01755¢~2%%1t | 0.000257e 01
+U. e .
0.072014e 02162 .

The time dependent viscous relaxation moduli is taken as
Q(t)=QP(t). A beam with dimensions, length L=0.6 m, height
h=0.02 m, and base b=0.01 m is used for analysis. The beam is
simply supported and is subjected to the following harmonic dis-
tributed load on the surface.

qt)=0, t<0
a(t) = o [sin (zﬂfu 9)], t>0 (5.6)

where o =0.01 MPa, 7=0.04 and ¢ =0. The beam is discretized
using 40 finite elements with 3rd order spectral interpolation func-
tions. A constant time step At=0.001s is employed with a total
simulation time of 1 s. In Fig. 3 we present the values of maximum
vertical deflection of the beam. The oscillations in the maximum
and minimum values demonstrate the cyclic creep behavior of the
beam.

5.2. Quasi-static analysis of thick beams

In this example, we present numerical solutions for creep re-
sponse of thick (L/h < 20) orthotropic beam modeled as a Maxwell
solid. The elastic moduli and the Prony series are the same as in the
above example. The dimensions of the beam are length L =0.1 m,
height h=0.02 m, and base b =0.01 m. The beam is simply sup-
ported and is subjected to a vertical distributed load on the top sur-
face. The load is ramped from a value of 0.0-1.0 MPa in 0.05 s and
is maintained constant for the rest of the time. A constant time step
At=0.01s is employed with a total simulation time of 5.0 s. The
beam is discretized with 10 finite elements with 4th order spectral
interpolation functions. The creep response is shown in Fig. 4, as
expected both the elastic and viscous response converge over time.

Next, we investigate the elastic creep recovery behavior of the
constitutive model using the following time dependent load for
the same beam as above. An important characteristic is that the
beam should eventually return to its original configuration once
the loads are removed. To demonstrate that the present finite ele-
ment model captures this effect, we consider a hinged-hinged
beam subjected to the below quasi-static transverse load of inten-

sity qo
a(t) = %{H(t) - (¢ — om)H(t — m) — (¢~ POOH(t — ﬁr)]}

(5.7)

T(f—o)

where H(t) is the Heaviside function, and we take go = 1.0 MPa and
7 =1800 s. The parameters O < o < < 1 are constants. The Eq. (5.7)
represents a load function that is constant in 0 < t < a7 and then lin-
early decreases to zero from t= ot to t = Bt. For t > ft, the load is
maintained at zero (see the inset in Fig. 5). A constant time step
At=0.01s is employed with a total simulation time of 18 s and
the beam is discretized with 10 finite elements with 4th order
spectral interpolation functions. In Fig. 5 we present the numerical
results for various values of « and B. As expected, each one of the
curves in the figure follow a path of delayed recovery from t= ot
to t=pt and to their original configurations as time t gradually
tends to infinity with the applied loads being removed.

6. Conclusions

In this paper a fully-discretized finite element model for an
orthotropic, linear viscoelastic beam based on a general third-order
beam theory has been developed. The 2-D plane-stress constitutive
model is used for the viscoelastic formulation. The beam consid-
ered is capable of undergoing moderate rotations and small strains
in the sense of the von Kdrmdn geometric nonlinear strains. The as-
sumed displacement field allows for a better bending-extensional
coupling and the use of C°-continuous functions for all the primary
variables, thus simplifying the implementation. A two-point recur-
rence scheme is developed such that history from the last time step
needs to be stored. Various numerical examples have been in-
cluded to demonstrate the capabilities of the developed finite ele-
ment model.
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Appendix A. Semi-discretized equations

In this Appendix we present explicitly the components of the
semi-discretized finite element model.
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All other stiffness coefficients are zero.

Appendix B. Fully-discretized equations and tangent matrix
B.1. Fully-discretized finite element equations

The additional matrices introduced in the fully-discretized form
of the finite element equations can be expressed as
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Raphson linearization procedure [32]. The linearized equations
are of the form

{Am}s = {A(F])}s
[ (RODAT D+ {F ) - QYY) (B3)

where {A"), represents the solution at the r'th iteration and time
t = t,. The tangent stiffness matrix [T], in Eq. (B.3) is defined using
Einstein’s summation notation as

K aé-
TU - ZKU Nlﬂ m aAjl (B-4)

All quantities in Eq. (B.4) comprising the tangent stiffness ma-
trix are formulated using the solution from (r — 1)'th iteration. It
is important to note that all the partial derivatives are taken with
respect to the solution of the current time step. Applying the New-

ton’s method to the fully-discretized beam equations results in the
following components of tangent stiffness matrix
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